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Note 

Fast Direct Poisson Solvers for High-Order 
Finite Element Discretizations 

in Rectangularly Decomposable Domains 

It has been recognized for some time that substructure (or subdomain) methods 
can significantly increase the efficiency of finite element solution of elliptic partial 
differential equations [ 11. In substructuring techniques, the computational domain, 
D, is broken up into N, subdomains, Ek, D = lJk E,. Block elimination is then used 
to reduce the finite element equations to N, sets of calculations for the internal 
degrees-of-freedom in the individual subdomains, coupled by a statically-condensed 
system matrix involving only the nodes on substructure boundaries. This block re- 
organization of the discrete equations can be exploited in a variety of ways to 
economize the solution process. 

Of interest here is the fact that, although fast solvers [2-51 may not be 
appropriate or efficient for the original domain, D, they often can be used to advan- 
tage on the individual substructures, E,. In particular, there has been much work 
recently on application of substructuring methods to the fast solution of low-order 
finite element approximations to elliptic problems on rectangularly decomposable 
domains [6-91. In this note, we consider an extension of these ideas to the case of 
general high-order finite element approximations, such as high-order h-type techni- 
ques, spectral element methods [lo], and p-type finite element schemes [ 111. The 
algorithm presented combines (outer) static condensation with (inner) fast eigen- 
function techniques [2, 121, to obtain an order-independent optimal operation 
count of O(N5.‘2) for an N x N grid. 

SPATIAL DISCRETIZATION 

We consider here arbitrary-order finite-element solution of the constant-coef- 
ficient Helmholtz equation in two dimensions, 
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on domains D decomposable into rectangular subdomains (or *‘super-elements” ) 
Ek, D = Uk E,. The algorithms to be presented are most efficient in the case when 
one is interested in solving the same equation (i.e., same homogeneous opera&or) 
for many different forcing functions, f, and the methods are therefore especially 
appropriate for time-integration of constant-coefficient (in time) partial differential 
equations in which the spatial operators are of the form given in Eq. (I ). Our par- 
ticular interest is in solution of the incompressible Navier-Stokes equations, in 
which Poisson and Helmholtz equations arise in treatment of the pressure and 
viscous terms, respectively [IO]. 

The spatial discretization proceeds by first expanding the unknown u. and 
inhomogeneity, ,< in each super-element E, in standard tensor-product Lagrangian 
interpolant finite element basis functions [lo], 

where summation from 0 to M over repeated indices is assumed. Here the /I,(:‘) are 
Lagrangian interpolants, which may be of any order from unity (corresponding to 
piecewise linear interpolation, in which a super-element is made up of M x 2’ 
bilinear finite elements) to M (corresponding to a subdomain which is a single spec 
tral element [lo] ). For the sake of simplicity, we assume that the representation (2) 
is the same for ah super-elements, and that, furthermore, all super-elements are 
identical squares with sides of length L. In practice, (2) can be replaced with any 
substructure-dependent representation which reduces to tensor-product form for he 
internal degrees-of-freedom. 

We now insert (2) into the variational form for (I ) C f3]> and require stationarity 
with respect to variations in the nodal values. This gives the following superelemen- 
tal equations 

where 

and 

A;.,,, = -Air,, Bjll - (417) 

B$,,, = B irn B P. (4c’i 

Here A, and B, are (symmetric, positive-definite) finite element matrices 
corresponding to the one-dimensional Laplacian and mass operators on an interval 
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equivalent to one side of a super-element. For instance, for super-elements made up 
of M identical linear elements, A, and B, are tri-diagonal operators given by 
A,i = Yi/AZ, A,,;+ I = A,,+ r = -~/AZ, Bi,i= (ri AZ/~), Bi.i+ r = B,+ I = (AZ/~). Here 
yi= 1 for i=O, M, yi = 2 otherwise, and Ai = L/M. For the case of a super-element 
consisting of a single Mth-order Chebyshev spectral element, A, and B, are now 
full matrices, for which explicit formulae are given in [lo]. 

SOLUTION ALGORITHM 

We now present the solution algorithm for the set of super-elemental equations 
given in Eqs. (3)-(4). The basic strategy is to use static condensation to decouple 
the super-elements [ 11, followed by fast eigenfunction (tensor-product) solution 
[2, 121 for the degrees-of-freedom interior to the individual subdomains. We first 
briefly describe the block elimination procedure, and then turn to the construction 
of the inner solvers. 

Denoting the vector of nodes that lie on a given super-element boundary as 
[B~k], and the remaining interior nodes [‘u”], the super-element equations can be 
written in block form as 

[ak] [ BUk] + [bk] ‘[ Gdk] = [ Bg”] iW 
[bk][IBz4q+ [ck]['uk]= ['gk], (5b) 

where 

g;. = B f f f’,, . (5c) 

Standard block elimination then gives 

[ak][“uk] = CBgk] i6a) 
[ck]['uk]= ['g"]- [b"]["z4"], (6b) 

where the statically-condensed matrix, [ii”], and associated inhomogeneity, [“gk], 
are given by 

[ii”] = [a”] - [b”]‘[c”] -‘[bk-Jy Va) 

and 

[“g”] = [“g”] - [b”]‘[c”]-‘[‘g”], i7b) 

respectively. The global system for the statically-condensed nodes is then construc- 
ted from (7) by direct stiffness summation. 

The key here is that the various super-elements are coupled only through the 
equations for the boundary nodes, [“u”]. We therefore first solve the global system 



FAST DIRECT POISSON SOLVERS 

derived from direct stiffness assembly of (6a) for the [“u”]. The problem defined on 
the individual super-elements for the remaining degrees-of-freedom (the [‘Us] ) is 
now a separable problem with homogeneous boundary conditions, for which a fast 
eigenfunction solver can be readily implemented. In particular, in (O))(7) we reouire 
solution of 

which can be accomplished in 0(M3) using a tensor-product method, 

Here S, and A, are the eigenvectors and eigenvalues, respectively, of the 
generalized eigenvalue problem 

A$,, = B,iSjpAD i30a) 

sop = SM, = 0, (lob) 

normalized by SmpBn,,,SnY = 6,, (B-orthogonality and reality of A, following from 
symmetry of A and B). 

A somewhat faster approach to the solution of (8) is the use of an eigenfunction 
expansion in only one direction (say, x), with matrix inversion in the other 
tion [3]. In this case, (9) is replaced with 

where 

i?; = -A, - (1”’ + /I,) B,. (:2) 

Note by use of the generalized eigenvalue problem (lo), we need not make any 
assumptions concerning the commutation of A and B [I]. 

COMPUTATIONAL COMPLEXITY 

We now examine the computational complexity of the solution algorithm 
described above. For this purpose, we consider the problem of a square domain, D, 



478 ANTHONY T. PATERA 

made up of a regular array of P x P super-elements (N, = P2). (Similar, but more 
complicated, estimates are possible in the case of nonrectangular domains.) We 
define the number of points per domain side as N + 1, and the number of points per 
superelement side as M+ 1, giving a relationship between N, M, and P of M= N/P. 

Although efficient iterative techniques have been developed for the coupling 
matrices resulting from low-order substructuring schemes [6-91, for the high-order 
methods of interest here we consider the simpler case where the statically-condensed 
global system is solved by direct banded Gaussian elimination. Determining the 
internal degrees-of-freedom from (6b) using (9) or (1 l), the operation count for the 
entire system per right-hand side is thus given by 

W(P) = aPN2 + fiN31P l-$P$N, N*rx; (13) 

where LX and /I are constants independent of N and P. (Although the static conden- 
sation algorithm obviously admits a high degree of parallelism, we do not discuss 
this here, and it is not reflected in the operation count given above.) The first term 
in (13) corresponds to the Gaussian elimination for the super-element boundary 
points (0( NP) unknowns by bandwith O(N)), whereas the second term is due to 
the eigenfunction solver for the [‘uk] (9) or (11 ), the formation of the terms on the 
right-hand side of (6a) and (6b), and the factorized construction of [ gk] in (5~). 
Note we have neglected here the pre-processing work associated with the formation 
of the global Cholesky decomposition (O(N3P)), as we are interested in an 
asymptotic operation count for many right-hand sides. (The pre-processing work 
associated with the diagonalization and inversion of the one-dimensional operators 
is negligible for the case studied here.) 

It is clear from differentiation of the expression (13) with respect to P that a 
minimum in the work occurs at P* = (~N/c()“~ (N* coj. This corresponds to an 
optimal operation count of W*( P* j = 2(~b)“‘N”~ (N 3 IY- j, indicating that the 
scheme is signilicantly faster than, say, a direct banded solver or optimal SQR, both 
of which require O(N3) operations. Furthermore, this work estimate of O(N”‘) is 
independent of the order of the scheme, valid for the whole range of 
approximations from second-order bilinear finite elements to exponentially-con- 
vergent spectral elements of order M w O(N”‘) [IO]. 

For the case of bilinear elements on a uniform mesh, the 0( Njl’) operation count 
is certainly not the best possible, as one can achieve an O(N’ log N) count [4] by 
using the FFT algorithm on super-elements as large as possible (e.g., P= 1 in our 
square example above). However, such an option does not typically exist for 
variable-mesh or high-order schemes, in which case our O(NS’2) estimate seems 
quite good. Furthermore, even for low-order discretizations, the current algorithm 
works for a larger class of problems than fast transform techniques. 

It should be noted that, in the case of super-elements consisting of elements of 
fixed order (e.g., bicubic), the choice of P in no way effects the numerical dis- 
cretization or the resulting accuracy of the solution. However, if one chooses to 
identify a single spectral element with each super-element, the order (and hence, 
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accuracy) of the scheme now scales with P, and the sense in which P* is optimal is 
no longer as clear. A detailed description of application of the technique to spectral 
element solution of the Poisson and NavierrStokes equations can be found in 
[ 14, 151, in which the operation counts given here are verified empirically. and the 
practical problems associated with optimal choice of P are addressed [14]. 

The methods and operation counts presented here are easily generalized to any 
situation in which the tensor-product or single-direction eigenfunction expansion 
methods can be applied to the subdomain problems. In particular, the one-dimen- 
sional operators, A,, B,, need not be the same for the two co-ordinate directions, 
allowing, for instance, for solution of elliptic problems in cyiindrical coordinates. I\ 
is, nevertheless, a serious limitation that the method applies only to domains which 
can be represented as the sum of rectanguiar subdomains, as this excludes ths 
important case of general isoparametric elements [16]. Furthermore, in three 
dimensions, even in regular domains the method is not competitive with techniques 
such as conjugate gradient iteration [17, IS], dQe to the relatively large number of 
subdomain boundary nodes in higher space dimensions. 

We have presented here a direct fast solver for arbitrary-order finite and spectral 
element discretizations of separable elliptic equations on rectangularly decom- 
posable domains. The method is based on substructure concepts, in which banded 
elimination is used on statically-condensed equations for subdomain boundary 
nodes. with subsequent fast eigenfunction solution of the decoupled subdomain 
problems. By minimization of computational work with respect to degree of 
domain subdivision. an order-independent optimal operation count of O(LV5 ‘1 is 
obtained: due to significant pre-processing requirements, this estimate is onfy 
achieved in the limit of many solves per given homogeneous operator, such as in 
implicit solution in time of parabolic partial differential equations. 
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